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Abstract Hydrogel nanocomposites having high amount of functional group,

enhanced swelling ability, and improved mechanical properties were prepared for

removal of basic dyes from aqueous solutions. Acrylamide (AAM) and itaconic acid

sodium salt (IANa) were polymerized using polyethyleneglycol (400) diacrylate as

crosslinker in the presence of montmorillonite (MMT). The products were char-

acterized by swelling degree, total basic group content, XRD analysis, and FTIR

spectroscopy. It was observed that MMT addition increased the itaconic acid

gelation. The incorporation of low amount of MMT into the hydrogel structure

increased also swelling degree. The products were used as adsorbent for removal of

brilliant cresyl blue (BCB) from aqueous solutions. It was observed that the

adsorption of BCB onto the nanocomposite completed in 30 min. It was found that

the adsorption kinetics followed a pseudo-second-order kinetic model. Equilibrium

isotherm of nanocomposite was analyzed using Freundlich and Langmuir isotherms.

It was seen that the Langmuir isotherm model fit the adsorption data. These

hydrogel nanocomposites have been shown to have the potential to be used as novel,

fast-responsive and high capacity adsorbent materials for the removal of cationic

dyes which is a serious problem, especially in textile industry.
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Introduction

Many industries (plastics, paper, textile, and cosmetics) use dyes to color their

products. The release of toxic and hazardous dyes from these industries has created
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a global concern due to their immense toxicity toward mankind. Dyes impart

undesirable color to water and are lethal for aquatic life. The toxic and hazardous

substances created by these dyes after undergoing oxidation and reduction in water

further increase the need for their removal from wastewater. For removal of dyes

from wastewater, adsorption process appears to offer the best prospects over other

treatment technologies (chemical coagulation-flocculation, biological process,

different type oxidation processes, etc.) due to high efficiency, easy handling and

availability of different adsorbents [1].

Nowadays, the use of several polymers having different functional groups in

adsorption process has gained great importance for wastewater treatment due to

their high adsorption capacities, especially regeneration abilities and reuse for

continuous processes [2, 3]. Hydrogels possessing different functional groups have

also been investigated in the preceding literature [4, 5]. They can be defined as

water-swollen, three-dimensional networks, and also show stimuli-responsive

properties to the various external parameters such as temperature, pH, solvent,

and salt composition leading them to be used in a variety of application areas. But

the use of hydrogels in some applications is limited as they typically exhibit low gel

strength and poor stability. In recent years, hydrogel/clay nanocomposites have

attracted much attention due to their improved mechanical, thermal and swelling

properties, dimensional stability compared to the pure hydrogels [6–10]. Synthesis

of hydrogel composites and nanocomposites through in situ polymerization of

monomers using micronized inorganic materials such as montmorillonite [6], kaolin

[11], attapulgite [12], and mica [7] has been recently investigated.

Polyacrylamide-based hydrogels have also received considerable attention in

many fields due to their ability of copolymerizing with different functional

monomers and reactivity of amide group for the modification reactions. Itaconic

acid is a water soluble monomer having two carboxylic acid groups (Fig. 1). Due to

its double functionality, itaconic acid polymers offer interesting possibilities as

functional polymers for wastewater treatment. However, literature on the homo-

polymerization of IA is limited [13] and it is stated that it was a non-polymerizable

monomer [13, 14]. The majority of the studies on the itaconic acid hydrogels have

focused on the copolymerization with different monomers, especially with

acrylamide monomer [15–19]. Furthermore, in previous literature it is stated that

the copolymer starts to be formed and crosslinked only when the concentration of

AAM monomer exceeds 60% [16] and some small gelation content data, belongs to

the IA including hydrogels, are also present being smaller than 30% [20].

The aim of this study is to synthesize and characterize the novel AAM-IA-MMT

hydrogel nanocomposite with high IA amounts and to investigate their uses as

adsorbent for removal of basic dyes from aqueous solutions. In this study,

polyethyleneglycol (400) dimethacrylate was used as crosslinker in the preparation

of acrylamide–itaconic acid hydrogels (Fig. 1), for the first time. The hydrogel

nanocomposites were characterized by FTIR, XRD, swelling degree, and total basic

group content analysis. Also, their adsorption properties were investigated and the

effects of the adsorption parameters like adsorption time, initial dye concentration,

and pH were exhibited.
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Experimental

Materials and instruments

Acrylamide (AAm) and itaconic acid (IA) monomers were obtained from Merck

and they were used without a further purification in polymerization reactions.

Amoniumpersulfate and N,N,N0,N0-tetramethylethylenediamine (TEMED) were also

purchased from Merck and were used as received. Polyethyleneglycol (400)

diacrylate (PEG(400)DA) was kindly received from Sartomer and used without

further purification. Clay mineral used in this study is a montmorillonite (Cloisite-

Na) which was supplied from Southern Clay. The cation exchange capacity of the
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Fig. 1 Schematic illustration of the formation of nanocomposite hydrogels
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clay was 92 meq/100 g and the mean size of the particles was less than 13 lm.

Brilliant cresyl blue (C17H20N3OCl.1/2ZnCl2, BCB) was obtained from Merck. The

molecular structure and identification information of BCB are depicted in Table 1.

All the other reagents used throughout this study were extra pure chemicals.

FTIR spectra of the samples were recorded with a Digilab Spectrometer,

Excalibur-FTS 3000MX model (Digilab, USA) in the range from 4000 to 400 cm-1

using KBr pellets. Spectra were taken with a resolution of 2 cm-1. XRD analyses

were performed with a Rigaku D/Max-2200/PC model (Rigaku, Japan) wide angle

X-ray diffractometer (XRD) with Cu anode, running at 40 kV and 40 mA, scanning

from 2� to 15� at 0.05�/min. The dye concentration determinations were performed

using a Perkin Elmer Lambda 35 UV/VIS spectrophotometer.

Preparation of hydrogel nanocomposites

Acrylamide (AAM) and itaconic acid (IA) were polymerized with 60:40 AAM/IA

mass ratios in aqueous solution. MMT content was also varied as 0, 3, 5, 7, and 10%

(w) in total monomer mixture. IA monomer was neutralized by equivalent NaOH

before polymerization. PEG (400) DA was used as 1% mole of the total monomers.

The schematic illustration of the formation of nanocomposites is given in Fig. 1.

Polymerization reaction was initiated by adding ammonium persulfate and TEMED

as the initiator and activator, respectively. In hydrogel nanocomposite preparation,

firstly, MMT were dispersed in water by ultrasonic probe, then added into the

monomer solution and stirred at ambient temperature for 3 h. Reactions were

carried out in sealed petri dishes at 25 �C for 24 h after bubbling dried nitrogen into

the mixture. Gel samples were purified by disintegrating in methanol/isopropyl

alcohol mixture followed by filtering and washing with the excess of water and then

with methanol. After that, these gel samples were dried at 50 �C under vacuum to

obtain powder samples.

Characterization

Determination of total basic group (TBG) content

Total basic group (TBG) content is considered as the sum of basic groups from

sodium itaconate and MMT (0.06 mmol/g). For determination, samples were

Table 1 The chemical structure and some properties of BCB

Name Chemical structure Molar mass

(g/mol)

Color index

number

kmax

(nm)

Brilliant Cresyl

blue

O N

H3C

CH3

Cl

1/2ZnCl2

H3C

H2N

N 385.96 51010 622
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equilibrated with the HCl solution (20 mL, 0.1 N) by stirring 24 h in a sealed flask,

followed by filtration and the residue was washed with distilled water to remove

unreacted HCl. The filtrate was titrated with 0.1 N NaOH solution in the presence of

phenolphthalein indicator. The gelation amount of IA was also calculated by the

ratio of the amount of IANa groups determined to the theoretically IA amount in

polymer and was defined as gelation % of IA.

Determination of swelling degree

Swelling degrees of the samples were gravimetrically determined by the tea-bag

method. The tea-bag was made of nylon screen. The tea-bag containing 0.1 g of

sample was entirely immersed in distilled water. It was taken out of the water at

regular time intervals, wiped superficially with a filter paper, weighed and replaced

in the same water to ensure a state of equilibrium swelling. Swelling degree was

calculated from the following equation:

S g=gð Þ ¼ Ws �Wdð Þ=Wd ð1Þ

where Ws and Wd are the weights of swollen and dry sample, respectively. Swelling

degree of the sample in equilibrium state was named as equilibrium degree of

swelling (EDS).

Adsorption studies

Adsorption experiments were carried out at 25 �C, in magnetically stirred (160 rpm)

thermostated cylindrical glass vessels, in batch conditions. The polymers (50 mg)

were added into brilliant cresyl blue (BCB) solution (50 mL) with the concentration

of 500 mg/L for the determination of adsorption capacity. The amount of residual

dye in the solution was determined spectrophotometrically after 24 h. Dependence

of the adsorption capacities on time was determined and adsorption kinetics was

investigated in detail. Furthermore, adsorption isotherm was obtained by stirring

60-40-c3 product in the dye solutions with various initial concentrations for a period

of time equal to the respective equilibrium times. Adsorption capacity of 60-40-c3

product was also determined in the pH range of 3.0–8.0. The pH of the initial

solutions was adjusted using dilute HCl or NaOH. The residual concentrations of

dye were determined as described above. All the experiments were carried out

triplicate. The adsorption capacity, Q (mg dye per g polymer), of polymers was

calculated using the following expression:

Q mg/gð Þ ¼ Ci � Ceð Þ V=m ð2Þ

where Ci and Ce are the initial and equilibrium concentrations of dye (mg/l),

respectively, V is the volume of the solution added (l), and m is the amount of

polymer (g).
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Results and discussion

FTIR characterization

Absorption peaks originated from the C=O group at 1666–1669 cm-1 and NH2

groups at 1615–1617 cm-1 of the AAM unit were seen in the spectrum of AAM-

IANa hydrogel (60-40-c0) (Fig. 2). The peaks originating from the sodium itaconate

at 1561 and 1398 cm-1 were also observed. Furthermore, the asymmetric stretching

vibration of the C–O–C bond of the PEG (400) DA crosslinking agent at

1183–1191 cm-1 was observed. It was concluded that the crosslinker participated

into the polymer matrix and crosslinking reaction between PEG (400) DA and the

monomers occurred. In spectrum of montmorillonite, the absorption peaks

indicating OH stretching of water molecules in the clay structure and also OH

groups between octahedral and tetrahedral sheets were observed at 3451 and

3628 cm-1, respectively [21]. Other characteristic peaks originating from the H–O–H

bending at 1638 cm-1 and Si–O stretching at 1044 cm-1 were also observed. In

spectrum of the hydrogel nanocomposite (60-40-c10), all the characteristic peaks of

montmorillonite and AAm-IANa hydrogel were observed. These confirm that the

montmorillonite participated to the polymer structure. On the other hand,

disappearing of the absorption peak at 3628 cm-1 which corresponds to the OH

groups in clay structure supposed that the grafting mechanism was occurred on the

clay mineral layers [22, 23].
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Fig. 2 The FTIR spectra of MMT (a), AAM–IANa–MMT nanocomposite (b), and AAM–IANa
hydrogel (c)
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XRD analysis

The main reflection which could be attributed to the specific d001 basal spacing of

montmorillonite (2:1) was seen at 2h = 7.84� in the XRD pattern of Cloisite-Na

(Fig. 3) and d001 basal spacing of montmorillonite was calculated as 11.3 Å by the

Bragg equation. But, no reflection corresponding to the d001 basal spacing of

montmorillonite layers was observed for hydrogel nanocomposites. The absence of

this reflection indicated that the montmorillonite layers were exfoliated. Only for

60-40-c10 product, this reflection shifted to the lower diffraction angle (2h = 6.12�)

and the d001 basal spacing of montmorillonite layers expanded (14.5 Å). This

confirmed the existence of the intercalated clay structure together with the

exfoliated one.

Properties of hydrogel and hydrogel nanocomposites

Total basic group (TBG) content, gelation % of IA and equilibrium degree of

swelling (EDS) of products are given in Table 2. MMT addition increased the TBG

value and also gelation of IA. For instance, the TBG value of hydrogel increased

from 2.85 to 3.29 mmol/g by addition of low amount of MMT (3%) and the gelation

of IA increased from 62.9 to 70.6%. It was supposed that MMT acted as crosslinker

and increased the IA gelation. It is known that increasing the amount of IA in

monomer composition decreases the gel formation and effective crosslinking
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Fig. 3 XRD patterns of the MMT and AAM–IANa–MMT hydrogel nanocomposites. (a 60-40-c3, b 60-
40-c5, c 60-40-c7, d 60-40-c10)
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densities of polymer networks [15, 24]. Likewise, in this study, disk shape gel with

high IA ratio could be obtained by addition of MMT (Fig. 4).

The AAM–IANa hydrogel has quite high EDS values (300.3 g water/g) as seen

in Table 2. It is supposed that the PEG(400)DA structure would be also effective on

Table 2 Preparation conditions and properties of AAM–IANa hydrogel nanocomposites

Polymera Clay ratiob in total

monomer (w%)

TBG content

(mmol/g)

Gelation %

of IA

EDSc (%) Q (mg/g)

60-40-c0 – 2.85 62.9 300.3 419.7

60-40-c3 3 3.29 70.6 339.7 457.4

60-40-c5 5 3.08 64.9 286.7 436.5

60-40-c7 7 3.28 65.8 256.9 405.4

60-40-c10 10 3.17 63.9 219.5 386.9

EDS equilibrium degree of swelling, TBG total basic group
a Samples were prepared with 60:40 AAM:IA (w) ratio. PEG(400)DA/total monomer mole ratio was

1/100 and (NH4)2S2O8: 150 mg, TEMED: 1 mL (25% aqueous solution), water: 40 mL were used per 4 g

total monomer
b Clay ratio was presented in feed
c EDS was determined in distilled water

Fig. 4 The photographs of AAM–IANa–MMT nanocomposite (a) and AAM–IANa hydrogel (b) after
polymerization
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the swelling degree. In literature, higher swellable hydrogels were obtained using

PEG (400) DA instead of N,N-methylenebisacrylamide (NMBA). PEG (400) DA

has a longer and more flexible chain structure than that of NMBA [25]. Its longer

chain length provides a larger space among the acrylamide chains (Fig. 1). As a

result; water diffuses into the gel structure more easily and provides higher EDS

value. In nanocomposite hydrogels, addition of low amount of MMT into the

polymeric structure increased the EDS values (60-40-c3 product) (Table 2). It is

supposed that the increasing in the gelation of IA by the addition of MMT increased

the EDS value. Furthermore, it is stated in literature that the addition of low amount

clay into the hydrogel increased the swelling ability due to the hydrophilic structure

of montmorillonite [26, 27]. According to the Flory’s theory, swelling degree of a

gel depends on the ionic osmotic pressure, crosslinking density, and the affinity of

the gel for the liquid. As the cations present in MMT are easily ionized, MMT is

dispersed into the polymer. Higher hydration and distention of MMT could enhance

the hydrophilicity of the nanocomposite and hence it swells more. But high clay

content decreases the swelling ability since the clay layers act as a crosslinking

agent. So, additional crosslinking points between polymer and clay layers are

generated in the polymeric network, which increases crosslink density of the

hydrogel and then the elasticity of polymeric chains decreases [6, 22, 28]. Likewise

in this study, all nanocomposites have higher TBG values and IA amounts than the

hydrogel (60-40-c0), but they have lower EDS values except for the 60-40-c3

product.

In addition to the increase of the swelling capacity, swelling rate also increased

with the MMT addition due to its higher hydration and distention ability [26, 27]

(Fig. 5). Another interesting point is that no visible MMT loss was observed from

the sample structure during the swelling and purification process. The photographs

of hydrogel nanocomposites in different stages (just after preparation, dried and

swollen) during this process are shown in Fig. 6. Hydrogel nanocomposite is

transparent and keeps its original shape without changing at the swollen state.
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Adsorption studies

The brilliant cresyl blue (BCB) was selected as model compound to investigate the

uses of the AAM–IANa hydrogel and hydrogel–MMT nanocomposite for the

removal of basic dyes from aqueous solutions. Adsorption properties of the products

were evaluated by depending on adsorption time, initial dye concentration, and also

product properties. All samples have quite high BCB adsorption capacities

(Table 2). Carboxylate groups on the polymer structure have the ability to create

interactions with the amino groups of dye. Furthermore, the hydrophobic

interactions between the aromatic rings of the dye and the hydrophobic groups on

the polymer may be present. Adsorption capacity of the products varied by

depending on their TBG and EDS values. This value increased up to 3% MMT

content and decreased later. The BCB adsorption capacity of hydrogel (60-40-c0)

increased from the value of 419.7 to the value of 457.4 mg/L by the addition of low

amount of MMT into the polymer structure. This increase may also be attributed to

the high TBG and EDS values of the 60-40-c3 product. Also, strong interactions

between the clay mineral layers and polymer matrix will be affecting the adsorption

capacity. Clay mineral layers may easily adsorb organic cations. In adsorption

experiments, the adsorption capacity of the Cloisite-Na was found to be 387.3 mg/g.

Furthermore, the EDS value of products became effective on their dye adsorption

capacity. The 60-40-c5 product has lower TBG content (3.08 mmol/g) than the

60-40-c7 product (3.28 mmol/g), but it exhibits higher dye adsorption capacity

(Table 2). This increase may also be attributed to the high EDS value of the

60-40-c5.

The AAM–IANa hydrogel (60-40-c0) and hydrogel nanocomposite (60-40-c3)

were left in dye solution and their capacities were determined at specified time

intervals to investigate the time dependency of the adsorption capacity (Fig. 7). The

saturation was observed approximately within 60 min in case of 60-40-c0. In case of

60-40-c3 nanocomposite, high adsorption rates were observed at the beginning

(approximately within 15 min) and then plateau values were gradually reached

within 30 min. This high initial rate suggests that the adsorption occurs mainly on

the polymer surface. The adsorption behavior of dyes is directly related to some

Fig. 6 The photographs of AAM–IANa–MMT hydrogel nanocomposite. a Dried (on the left) and
removed from mold after polymerization (on the right). b Swollen (the sample was prepared in disk shape
to compare the size and transparency of the hydrogel nanocomposite)
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experimental factors such as pH of the solution, characteristics of the adsorbent,

dimensions of the dye molecule. It was reported that the equilibrium time changed

between 12 h and 2 days for the various adsorbents used for removal of BCB

[29–31]. The quite high adsorption capacities and higher adsorption rates of

hydrogel nanocomposites will provide an important advantage for using of these

materials in basic dye solutions.

In order to express the mechanism of the adsorption process onto 60-40-c0 and

60-40-c3, kinetic data were analyzed by a pseudo-first-order [32] and a pseudo-

second-order [33] equations. The linearized equation of the pseudo-first-order

kinetic model is:

log Qe � Qtð Þ ¼ log Qe � k1t=2:303 ð3Þ

where Qe and Qt refer to the amount of dye adsorbed (mg/g) at equilibrium and a

given time (t, min), respectively, and k1 is the rate constant of pseudo-first-order

adsorption (min-1). The values k1 and Qe can be determined from the slope and

intercept of the straight-line plots of log (Qe - Qt) against t.
On the other hand, the linearized equation of a pseudo-second-order equation is

expressed as the following form:

t=Qt ¼ 1= k2Q2
e

� �
þ 1=Qeð Þt ð4Þ

where k2 is the rate constant of pseudo-second-order adsorption (g/mg min-1). The

values of k2, Qe and the initial adsorption rate (ri = k2Qe
2, mg/g min) can be

obtained from the slope and intercept of the plot of t/Qt against t.
The validity of these two models can be checked by analyzing the linearized plots

(Fig. 8). It is revealed that the pseudo-second-order kinetic model fitted better than

the first-order model as the correlation coefficients (r2
2) are closer to 1 than those of

the first-order kinetics (r1
2) (Table 3). Moreover, the Qe values for the second-order

kinetic model is close to the Qe values obtained experimentally (experimental Qe

values are 419.7 and 457.4 mg/g of 60-40-c0 and 60-40-c3 products, respectively).
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The effect of the initial dye concentration on the adsorption capacity was

investigated by the experiments carried out at various initial dye concentrations

(40–500 ppm). Dye adsorption capacity of 60-40-c3 product increased with the

increasing initial dye concentration until saturation (Fig. 9). Results obtained from

the adsorption isotherm were evaluated by means of Langmuir and Freundlich

adsorption models.
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Fig. 8 Adsorption kinetics of the BCB onto the AAM–IANa hydrogel and AAM–IANa–MMT hydrogel
nanocomposite according to pseudo-second-order model (a) and pseudo-first-order model (b)

Table 3 The pseudo-first and pseudo-second rate constant for BCB onto hydrogel (60-40-c0) and

hydrogel nanocomposite (60-40-c3)

Polymer Pseudo-first-order kinetic model Pseudo-second-order kinetic model

Qe (mg/g) k1 (min-1) r1
2 Qe (mg/g) k2 (g/mg min) ri (mg/g min) r2

2

60-40-c0 13.468 6.86 9 10-2 0.9289 454.5 3.66 9 10-4 75.62 0.9924

60-40-c3 11.955 9.76 9 10-2 0.9784 476.2 9.80 9 10-4 222.23 0.9987

1164 Polym. Bull. (2011) 67:1153–1168

123



Basic assumption of the Langmuir adsorption model is that adsorption takes

place at specific homogeneous sites within the adsorbent. Langmuir isotherm is

represented by the following equation:

Ce=Qe ¼ 1= bQmaxð Þ þ Ce=Qmax ð5Þ

where Qe (mg/g) is the amount of the adsorbed dye per unit mass of adsorbent at the

final equilibrium concentration of the dye solution (Ce, mg/L). The Qmax signifies

the maximum adsorption capacity (mg/g) and b is related to the energy of

adsorption (L/mg). The essential characteristic of the Langmuir equation can be

expressed in terms of the dimensionless separation factor RL, which is defined by

RL ¼ 1= 1þ bC0ð ÞÞ ð6Þ

where C0 is the highest initial dye concentration (mg/L) and b is the Langmuir

constant. The value of RL indicates the type of the isotherm either to be unfavorable

(RL [ 1), linear (RL = 1), favorable (0 \ RL \ 1), or irreversible (RL = 0).

The isotherm data were applied to Langmuir and Freundlich isotherm model for

the hydrogel nanocomposite. Langmuir model fitted the adsorption isotherms better

than the Freundlich model. The correlation coefficient was found as 0.9997 for

Langmuir isotherm model and the low value of RL indicates a favorable adsorption

(Table 4).

To evaluate the influence of the pH on the adsorption of BCB, the 60-40-c3

product was left in dye solutions having different pH values between 3 and 8, and

the adsorption capacities were determined (Fig. 10). The adsorption capacity

increased with increasing pH of the initial solutions. It is supposed that the

ionization of carboxylate groups in the itaconic acid unit was effective on
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Fig. 9 Equilibrium adsorption values of the BCB onto the AAM–IANa–MMT hydrogel nanocomposite.
Adsorption conditions: 50 mg polymer, 25 �C, 160 rpm

Table 4 Langmuir constants for the BCB adsorption onto 60-40-c3 hydrogel nanocomposite

Polymer Langmuir constants

Qmax (mg/g) b (L/mg) RL rL
2

60-40-c3 500 6.67 0.0003 0.9997
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adsorption at higher pH values. At low pH, the carboxylic acid groups are present in

non-ionized form and probability of interactions between carboxylic acid groups

and dye molecules are low [34]. At high pH values, the concentration of anionic

groups (carboxylate anions) in the polymer network increases. The other effect of

the increasing pH value is on the EDS value, increasing in ionization degree of

carboxylic acid group will increase the repulsion of polymer chain resulted in easily

expansion of polymer network, it means increasing of EDS value. The pKa1 and

pKa2 values of itaconic acid are 3.85 and 5.45, respectively. It is seen from the

Fig. 10 that the adsorption capacity increased up to pH value of 6 and then no

increase was observed at higher pH values because of completion of ionization of

the carboxylate groups. Also, the adsorption of charged dye molecules onto clay

substance is primarily influenced by the surface charge depending on the solution

pH. At low pH, the clay had net positive charge and would be prone to

electrostatically repel cations [35].

Conclusion

New hydrogel nanocomposites were prepared by in situ copolymerization of AAm

and IANa monomers in the presence of montmorillonite by using PEG (400) DA as

crosslinker. MMT incorporation into the copolymer structure enhanced the itaconic

acid gelation and swelling properties of hydrogel. FTIR analysis showed that the

hydrogel/MMT nanocomposites were successfully obtained. Furthermore, XRD

analysis of the samples showed that clay mineral layers were exfoliated in the

hydrogel with low clay loading (3–7%) and exfoliated/intercalated clay dispersion

was observed when the clay loading is higher (10%). Products were also used in

adsorption of the BCB dye from aqueous solutions. It was found that the hydrogel

nanocomposite has quite high adsorption rate (equilibrium time is approximately

Fig. 10 Effect of pH on the adsorption capacity of BCB by 60-40-c3 (initial dye
concentration = 500 mg/L, 50 mg polymer, 25 �C, 160 rpm, 24 h)
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30 min) and adsorption capacity (458.1 mg/g). Kinetic and equilibrium studies

showed that the AAm–IANa–MMT hydrogel nanocomposites can be used as novel,

fast-responsive and high capacity adsorbent materials for the removal of cationic

dyes.
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